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Summary

When a proton bunch passes by, electrons which are in the chamber will gain some energy due to

the passage of this bunch. This report presents approximate formulas, valid in the absence of an

external magnetic field, for the total energy gained by a test charge from a relativistic beam as a

function of the initial radial position of the particle. These formulas are used to estimate the total

energy gained by a uniform distribution of test charges. One can thus obtain an approximate scaling

of the energy deposition on the beam screen with various parameters in the problem. These results

are compared to numerical integration, demonstrating that the longitudinal bunch shape has a

significant effect on the energy gained by a test charge. The assumption used in the analytic estimate

that the longitudinal bunch shape is rectangular significantly overestimates the maximum energy

gained as well as the energy gained by particles at low radii. Nonetheless, the analytic estimate

gives relatively accurate results for the average energy gained when the test charges are uniformly

distributed in the chamber. The paper also gives a computation of the distribution in energy gain of

the initially produced photoelectrons, which happens to be independent of the longitudinal bunch

distribution. Results are given for the parameters for the LHC. Finally, comments on the step size

necessary in a simulation are made.

1 Introduction

Synchrotron radiation from proton bunches in the LHC will create photoelectrons in the
beam pipe. These photoelectrons will be pulled toward the oppositely charged proton beam
when it passes by. When they hit the opposite wall, these photoelectrons generate secondary
electrons which can in turn be accelerated by the next bunch. For moderate values of the
secondary emission yield, this mechanism leads to the build-up of an electron cloud almost
uniformly distributed in the beam pipe. This process not only can potentially cause an
instability [1, 2, 3], but the energy transferred from the beam to the electrons will eventually
be deposited in the beam screen, creating an additional heat load on the cryogenic system
[4]. For both of these reasons, it is important to have an idea of the energy transferred from
the beam to the electron cloud.

The energy transfer is simple to analyze if the electron is far away from the beam. In this
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case, the electron is essentially stationary as a bunch passes, and the bunch can be treated
as simply changing the momentum of the electron by an amount which only depends on its
radial position in the beam pipe. This is often the situation for the photoelectrons when
they are first produced. The distribution of the energies of the photoelectrons after the first
bunch can then be computed relatively accurately using this approximation.

However, particles which are closer to the beam can get temporarily trapped in the
radial potential of the bunch, and will thus oscillate around it. The energy transfer to such
particles is more difficult to analyze. This difficulty can be partially overcome by assuming
that the longitudinal distribution in the bunch is rectangular. The problem then becomes
an autonomous one-dimensional problem (when certain other approximations are made).
While the solution can still not be written down in terms of elementary functions, certain
approximations can be made to get an upper bound on the energy transferred to the electron.

A non-autonomous version of the one-dimensional problem, where the longitudinal dis-
tribution in the bunch is non-rectangular, can be treated easily by numerically integrating
the equations of motion. The results are quantitatively and qualitatively different from what
one obtains with the rectangular bunch.

This report first computes an analytic estimate of the energy gained by a test charge as
a function of its initial position, assuming that it has no initial momentum. It then uses this
result to obtain an estimate of the energy transferred to a cloud of test charges uniformly
distributed in the beam pipe. One can then determine how the energy deposition varies
with beam current. Also, the distribution of the kick received by the initially produced
photoelectrons is computed, as is the maximum energy they receive. Results are given for
the parameters in the LHC.

The report then describes a numerical integration of the equations of motion which
takes into account the longitudinal bunch distribution. The simulation is run with the LHC
parameters, and the results are compared with the analytic estimates. The effect of the
bunch shape is also examined. Comments are made on the step size that is necessary to
correctly do a simulation of these effects.

2 Equations Describing the Particle’s Motion

2.1 The Potential

Consider a beam pipe with translational symmetry in one direction (the ẑ direction) with
a highly relativistic source distribution moving in the ẑ direction. Furthermore, assume
that the beam pipe consists of a single perfectly conducting surface. The vector and scalar
electromagnetic potentials due to the distribution can be written as a power series in 1/γ2 =
(1 − v2/c2), v being the source distribution’s velocity. They are given by Az = βφ and
A⊥ = 0, where φ is the scalar potential, A is the vector potential, β is the velocity divided
by c, and the subscript ⊥ refers to the part of the vector perpendicular to ẑ. To lowest order
in 1/γ2,

∇2
⊥
φ = −4πρ,

where ρ is the charge density in the beam. Note that the longitudinal position z is really
just a parameter in this equation, since the Laplacian operator is only the transverse one.
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For a cylindrically symmetric beam pipe and a cylindrically symmetric source distribution
ρ, φ is given by

φ(r, z) = 4π

∫ r

0

r′ ln
r′

r
ρ(r′, z)dr′.

Note that φ has been written so that φ(0, z) = 0.

2.2 The Hamiltonian

Consider a non-relativistic test charge with mass mT and charge qT = QT e. The Hamiltonian
describing its motion is

H =
p2

r

2mT

+
p2

θ

2r2mT

+

[

pz −
qT β

c
φ(r, z − βct)

]2

2mT

+ qT φ(r, z − βct). (1)

2.3 Simplifying Assumptions

Since the test charges are non-relativistic, and the transverse electric and magnetic fields due
to the source distribution are comparable, one expects that magnetic fields will only have a
small effect on the beam. Thus, one can drop the Az term in the Hamiltonian (1).

The bunch length is large compared to the transverse bunch size, and it is generally large
compared to the beam pipe radius. Thus, the energy gained in the longitudinal direction is
relatively small. This allows one to drop the pz term altogether, and z is simply a parameter
in the problem. Note that nonetheless, there is an effect which is potentially interesting
here. The test charge can potentially receive a longitudinal kick due to the passage of the
bunch. This longitudinal kick is being ignored here. To treat it properly, the entire pz term
should be kept, including Az. There will probably be little effect on the total energy gain,
but knowledge of how particles drift longitudinally between bunch passages is potentially
important.

Finally, the angular momentum pθ of the test charge is taken to be zero.
The simplified Hamiltonian is thus

H =
p2

r

2mT

+ qT φ(r, z − βct).

2.4 Scaled Problem

It is convenient to work in terms of scaled variables. First of all, write the source charge
density for a bunch of NS particles with charge qS = QSe as

ρ(r, z) =
qSNS

2πσ2
⊥
σℓ

f

(

r

σ⊥

)

λ

(

z

σℓ

)

,

where
∫

∞

0

u f(u)du = 1

∫

∞

0

u3f(u)du = 1

∫

∞

−∞

λ(u)du = 1

∫

∞

−∞

u2λ(u)du = 1.
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f and λ are normalized radial and longitudinal bunch distributions respectively, and thus
σ⊥ is the r.m.s. beam radius, and σℓ is the r.m.s. bunch length. Next, change variables as
follows:

r̄ =
r

σ⊥

z̄ =
z

σℓ

t̄ =
βct

σℓ

p̄r =
σℓpr

mT βcσ⊥

p̄z =
pzσ

2
ℓ

mT βcσ2
⊥

H̄ =
σ2

ℓ H

mT β2c2σ2
⊥

.

Note that this transformation is not symplectic; nonetheless, it preserves Hamilton’s equa-
tions of motion because it is a composition of a symplectic transformation and a simultaneous
scaling of the momenta and the Hamiltonian by a constant factor. The scaled Hamiltonian
in these scaled variables becomes

H̄ =
p̄2

r

2
+

QSQT NSrT σℓ

β2σ2
⊥

φ̄(r̄)λ(z̄ − t̄), (2)

where rT = e2/mT c2 and

φ̄(u) = 2

∫ u

0

u′ ln
u′

u
f(u′)du′

3 Approximate Analytic Solution

Assume that QS and QT have different signs, so that the test charges are pulled toward the
source distribution.

One expects two different types of motion to occur during the passage of the source
distribution. The first is if the source distribution passes by before the test charge has
started to move very much. This will be called the kick approximation. The second case
is when the test charge is so strongly pulled by the source distribution that it begins to
make oscillations around the source distribution. This case can be treated approximately
by assuming that the charge density of the source distribution is independent of time (this
assumption is exact for a bunch whose longitudinal shape is rectangular). This will be called
the autonomous approximation.

For computing the energy gained by a test charge, it is always assumed that the charge
has no initial momentum.

3.1 Kick Approximation

When the test charge’s position doesn’t change, the total change in p̄r as a result of the
bunch passage is

∆p̄r = −QSQT NSrT σℓ

β2σ2
⊥

dφ̄

dr̄
,

giving a net energy gain of

∆Ekick =
1

2
mT c2

(

QSQT NSrT

βσ⊥

)2 (

dφ̄

dr̄

)2

, (3)
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which is independent of the longitudinal bunch distribution.
In the case where the test charges are photoelectrons produced by the beam itself, an

interesting effect occurs. Because the beam is moving close to the speed of light, if a photon
is produced by a slice of the beam at a position z within the bunch, that photon will hit the
beam pipe wall at that same position z in the bunch as the bunch passes by. This assumes
that there is no loss of synchronism between the bunch and the photons, which should be
true as long as the photons don’t go through too many reflections. Thus, first of all, the
initial position of the photoelectron will be at the beam pipe wall, r = b. The beam pipe
wall is generally well outside of the bunch. Well outside the beam core,

φ̄(r̄) = −2 ln
r̄

c0

(4)

ln c0 =

∫

∞

0

u ln u f(u)du, (5)

where c0 =
√

2e−γ/2 ≈ 1.05968 for a transverse Gaussian distribution (γ is Euler’s constant).
Hence, if it had seen the kick from the entire bunch, it would have received an energy gain
∆Ekick of

∆Ewall = 2mT c2

(

QSQT NSrT

βb

)2

. (6)

However, the photoelectron which is produced will only see the portion of the bunch which
follows z. Thus, in the kick approximation, the momentum gained by a photoelectron emitted
at scaled position z̄ will be

P = ∆pwall

∫ z̄

−∞

λ(z′)dz′, (7)

where ∆pwall =
√

2mT ∆Ewall, assuming that positive z̄ refers to the head of the bunch. Since
the number of photoelectrons produced at scaled longitudinal position z̄ is proportional to
λ(z̄), the momentum gained by the photoelectrons will be uniformly distributed between 0
and ∆pwall, the energy gain E will be distributed from 0 to ∆Ewall according to the distri-
bution 1/(2

√
E∆Ewall), and the average energy gained will be ∆Ewall/3, as demonstrated

in appendix A (this results was also demonstrated by S. A. Heifets in [2]). All this is inde-
pendent of the actual longitudinal distribution λ(z). Note that this paragraph only applies
to the energy gained by the photoelectrons due to the first bunch passing by after they are
produced. Also, this is valid as long as the kick approximation holds near the beam pipe
wall. Below it will be demonstrated that this will be true in many cases, including the LHC
parameters examined here.

3.2 Autonomous Approximation

This approximation ignores the time-dependence in λ during the passage of the bunch. In
this case, the test charge executes circular-like motion in phase space. This will be valid if
the frequency of this oscillation is large compared to the time scales over which λ changes,
and (usually contrastingly!) when λ goes from zero to nonzero over a time scale that is
small compared to this oscillation time. In this case, ignoring any initial momentum of the
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test charge, the maximum energy gained by the particle will be given by its initial potential
energy

∆Eautonomous = mT c2QSQT NSrT

σℓ

φ̄(r̄)λ(z̄ − t̄). (8)

The actual energy gained depends on the exact period of the oscillation and the length
of time that the particle is subject to the force. As an initial estimate, one can assume the
particles to have half of this energy, the reason being that the average value of p̄2

r/2 is half of
its maximum value for a harmonic oscillator whose oscillation is stopped at a random time.
In practice, that “random time” comes from the fact that the period varies with the initial
radius of the test charge, and so we’re averaging over the period, and not the time. For
amplitudes where the potential does not resemble that of a harmonic oscillator, one expects
this fraction to be different from 1/2. The fraction should be less, since the potential is
proportional to ln r for large radii, which increases less rapidly than r2.

There is finally the question of which value of λ to use. The energy gained depends on
the position at which you choose to look at λ; this is why the z̄ and t̄ dependence was left
in (8). To make a pessimistic assumption, one should take the peak value, denoted λmax.
The idea is that the maximum potential energy seen may determine the energy gained by
the particle. In the case of a longitudinally Gaussian distribution, λmax = 1/

√
2π.

Finally, in practice, the energy gained will be less than what is discussed above due to the
variation of λ with time. If the variation of λ is slow compared to the oscillation period, one
expects an adiabatic-invariance type of behavior [5] which could lead to very little energy
being gained.

Thus, these assumptions tend to lead to over-estimates of the energy that will be gained.

3.3 Deciding Which Approximation to Use

The oscillation period in the autonomous approximation gives an idea of when to use the
autonomous approximation and when to use the kick approximation. If the oscillation period
is long compared to the time for the source distribution to pass, then the kick approximation
should work well. Otherwise, one should use the autonomous approximation.

At large radii, φ̄ approaches −2 ln r, which increases more slowly than r2. Thus, one
expects longer oscillation periods at large radii. There will therefore be a transition radius rC

above which the kick approximation is used, and below which the autonomous approximation
is used. The maximum energy is gained in the autonomous approximation if the test charge
executes a quarter oscillation. Thus, it is sensible to consider rC to be the radius for which
the time for the bunch to pass is equal to a quarter oscillation period.

A simplified model to determine the time for the bunch to pass is to take λ to be a step
function whose value is equal to the λmax, and whose length is such that the integral of λ
remains 1. Thus, it’s length will be σℓ/λmax (1/λmax in dimensionless units).

The time ∆t̄ for one complete oscillation can thus be computed to be

∆t̄ = 4

(

−QSQT NSrT σℓ

β2σ2
⊥

λmax

)−1/2 ∫ r̄

0

dr′
√

2[φ̄(r′) − φ̄(r̄)]
. (9)

The aforementioned approximations mean that ∆t̄ = 4/λmax when r̄ = rC/σ⊥. Thus, rC is
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found from the solution of the implicit equation

∫ rC/σ⊥

0

dr′
√

2[φ̄(r′) − φ̄(rC/σ⊥)]
=

√

−QSQT NSrT σℓ

β2σ2
⊥
λmax

. (10)

Equation (4) allows the left hand side of (10) to be evaluated approximately to be rC

√
π/2σ⊥,

using the fact that
∫ 1

0

dx√
− ln x

=
√

π.

Thus, the transition radius is

rC = 2

√

−QSQT NSrT σℓ

πβ2λmax

. (11)

The approximations used here indicate that this only makes sense when rC ≫ σ⊥.
An estimate of the maximum energy gained by any test particle can be obtained (fairly

accurately in practice) by using r̄ = rC/σ⊥ in equation (8). Using the approximation (4) for
the potential, the maximum energy gained will be approximately

∆Emax = −2mT c2QSQT NSrT

σℓ

λmax ln
rC

c0σ⊥

. (12)

3.4 The Total Energy Deposition

Assume that just before the bunch arrives, there is a uniform distribution of NT test charges
in a circular beam pipe of radius b (the radial distribution function is 2r/b2). Ignoring the
contribution from small radii within the beam core, the total energy gained by all the test
charges in the autonomous approximation (from within the radius rC) is

∆Eautonomous = NT mT c2

(

QSQT NSrT

βb

)2
4

π

(

ln
rC

c0σ⊥

− 1

2

)

. (13)

The contribution to the total energy from those particles governed by the kick approximation,
outside the radius rC , is

∆Ekick = NT mT c2

(

QSQT NSrT

βb

)2

4 ln
b

rC

. (14)

In both cases, the integrations were done assuming (4). This gets any contributions from
within the source distribution itself wrong, but these contributions should be negligible, both
because there are few test charges at this radius, and because the energy gained by those
particles is small.

Notice that the overall dependence for both the autonomous approximation and the kick
approximation is the same. The logarithm factors containing rC depend very weakly on the
parameters. As long as rC stays away from the beam pipe wall and the source distribution,
one expects these expressions to approximate the total energy gain fairly well (subject to all
aforementioned conditions).
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Thus, in particular, for a fixed number of test charges NT , we expect the energy deposition
to increase with the square of the beam current, and be roughly independent of the bunch
length and transverse beam size. This holds true as long as rC stays well outside the bunch
yet within the beam pipe. There is also an inverse square dependence of the energy deposition
on b.

In the case of photoelectrons being produced by the beam, the number of photoelectrons
per unit length scales linearly with the beam current. Thus, the overall dependence of the
specific energy deposition is with the cube of the beam current.

If rC becomes larger than the beam pipe radius (which will happen for very large cur-
rents), all particles should be treated with the autonomous approximation, giving an energy
deposition of

−NT mT c2QSQT NSrT λmax

σℓ

(

ln
b

c0σ⊥

− 1

2

)

.

Note that this increases only linearly with current, and now it also decreases inversely with
bunch length.

If rC becomes comparable to or less than σ⊥ (very low currents), then all particles should
be treated with the kick approximation. A good approximation would probably be to take
rC = c0e

−1/2σ⊥ and use (14) (the choice of rC coming from making (13) zero). The exact
value for rC won’t matter too much due to the logarithmic dependence.

3.5 Approximate Analytic Results for LHC

The relevant parameters for the LHC at top energy are

NS σℓ σ⊥ b
Nominal 1.05 × 1011 7.7 cm 0.2 mm 2.2 cm
Ultimate 1.6 × 1011 7.7 cm 0.2 mm 2.2 cm

Here b is taken to be the maximum aperture of the beam screen (optimistic assumption).
Using equations (6), (11), (12), (13), and (14), the results are

rC ∆Eautonomous/NT ∆Ekick/NT ∆Etotal/NT ∆Emax ∆Ewall

Nominal 0.85 cm 376 eV 350 eV 726 eV 5789 eV 189 eV
Ultimate 1.05 cm 931 eV 632 eV 1563 eV 9324 eV 439 eV

Note that rC is well outside the beam yet well within the beam pipe, as it must be for the
above computations to be valid. Also, the energy gained per electron is much less than
the rest mass energy of the electron, thus the non-relativistic approximation holds. Finally,
note that, as described in section 3.1, for the bunch passage in which the photoelectrons
are generated, the average energy gained is ∆Ewall/3, which is 63 eV for the nominal LHC
parameters and 146 eV for the ultimate parameters.

4 Numerical Computation

Using symplectic integration, one can determine the motion for a particle governed by the
Hamiltonian (2). In fact, one can easily take into account the longitudinal bunch shape λ,
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and see if that has a significant effect. One can then find the energy gained by the particles as
a function of radius, numerically integrate this over a uniform transverse distribution of test
charges, and compare the results to those which where obtained with the above approximate
analytic solution.

4.1 Step Sizes

To begin, one must determine the step size to be used in the integration, both in time and
in radius. If the time step is too large, the results can be very inaccurate. To obtain these
estimates, use the autonomous approximation described above. The function φ̄(u) can be
expanded in a Taylor series in u about the origin assuming that one has a Taylor series for
f about the origin:

φ̄(u) = −2
∞

∑

k=0

1

k!

1

(k + 2)2
f (k)(0)uk+2. (15)

Assuming f to be a function of r2, and taking the two lowest order terms in (15), the integral
in (9) can be computed to lowest order in r̄, giving

∆t̄ = 2π

(

−QSQT NSrT σℓ

β2σ2
⊥

λmax

)−1/2

f(0)

[

1 − 3

32

f ′′(0)

f(0)
r̄2

]

. (16)

Note that f(0) > 0, while usually f ′′(0) < 0. For a transverse Gaussian distribution, f(0) = 1
and f ′′(0) = −1. Note that ∆t̄ = 1/[λmaxnO(r̄)], where nO(r̄) is the number of oscillations
executed during the bunch passage by a particle starting at r̄.

Since the shortest oscillation period is that for particles near r̄ = 0, the time step should
be chosen to be a small fraction (ft) of

∆t̄step = 2π

(

−QSQT NSrT σℓ

β2σ2
⊥

λmax

)−1/2

f(0). (17)

Note that choosing ft larger than or comparable to 1 will probably result in very inaccurate
results! This may in fact be the reason for the excessively high peak in electron energy seen
in figure 6 of [3] (since the kick approximation, which is effectively what a single integration
step does, will vastly overestimate the energy transferred to a particle at low radii).

The radial step required to compute average values of the energy gain in the electron
cloud is more difficult to determine. Ideally, one wants to determine the difference in r̄ which
corresponds to a change in nO of 1. For small r̄, using equation (16), one finds

nO(0)

nO(r̄)
= 1 − 3

32

f ′′(0)

f(0)
r̄2.

One can compute dr̄/dnO, finding

dr̄

dnO(r̄)
= −

√

−8

3

f(0)

f ′′(0)

nO(0)

n2
O(r̄)

(

nO(0)

nO(r̄)
− 1

)−1/2

.
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Computing the second derivative of this with respect to nO(r̄) shows that the minimum of
the absolute value of this occurs for nO(r̄) = 3

4
nO(0). Thus, the minimum value of |dr̄/dnO|

is

−∆r̄step = −32

9

√

−2
f(0)

f ′′(0)

1

nO(0)
= −64π

9

√

−2
f(0)

f ′′(0)

(

−QSQT NSrT σℓ

β2σ2
⊥
λmax

)−1/2

f(0). (18)

Thus, the radial integration step should be a small fraction (fr) of this quantity. In most
cases this will underestimate the radial step size, since the expansion (16) becomes invalid
once r̄ becomes very large.

4.2 Numerical Results for LHC

A fourth-order symplectic integrator [6] is used to integrate the Hamiltonian (2), assuming
that initially p̄r = 0 and r̄ is a given initial condition. The step size is governed by the
considerations given in the previous section. The fractions ft and fr are chosen to be 0.003
and 0.03 respectively, but the values 0.03 and 0.1 are generally sufficient to get reasonable
results (for larger time steps one begins to see chaotic behavior). The values for ∆tstep,
∆rstep, actual step sizes for “reasonable results,” and nrect, a reasonable number of time
steps for a rectangular bunch, are

∆t̄step ∆r̄step 0.03∆t̄step 0.1∆r̄step nrect

Nominal 0.417 0.836 0.0125 0.0836 200
Ultimate 0.338 0.677 0.0101 0.0677 247

Three different forms for the longitudinal bunch distribution λ are used:

λrect(z̄) =
1√
2π

|z̄| <

√

π

2

λgauss(z̄) =
1√
2π

e−z̄2/2

λparab(z̄) =
35

96

(

1 − z2

9

)3

|z̄| < 3

λrect is what we assume for the approximate analytic solution in section 3. λparab is a
good approximation for the distribution in a proton machine (it’s similar to a Gaussian
distribution, but truncated smoothly at 3σℓ), whereas λgauss is probably more appropriate
for electron machines. In all cases, the radial bunch distribution f(r) is assumed to be a
Gaussian.

The resulting energy gain as a function of radius is shown in figures 1 and 2. Also shown
are the energy gains in the autonomous approximation as well as in the kick approximation.
The average energy gain for test charges uniformly distributed in the vacuum chamber can
be found by integrating the energy gain as a function of r times 2r/b2. The resulting average
energy gains are

Rectangular Gaussian Parabolic
Nominal 712 eV 644 eV 638 eV
Ultimate 1454 eV 1287 eV 1274 eV

10



0.0 0.5 1.0 1.5 2.0
0

2

4

6

r (cm)

∆
E

(k
eV

)

Figure 1: Energy gain as a function of initial particle radius for the nominal LHC parameters.
The solid line is for a rectangular bunch, the dashed line is for a Gaussian bunch, and the
dot-dashed line is for a parabolic-like bunch. The thin dashed line shows what the maximum
energy gain is expected to be in the autonomous approximation, whereas the thin dot-dashed
line is the energy gain expected in the kick approximation.

Comparing the numbers found in section 3.5, the energy gains for the rectangular distribution
compare relatively well to the analytic estimates. Examining figures 1 and 2 sheds some light
on this. At large radii, the kick approximation gives a good approximation to the energy
gain, and for low radii, the maximum energy in the peaks is exactly the maximum energy
expected in the autonomous approximation. The tradeoff between the estimates being lower
for large radii and higher for low radii (because the average energy gain is less than half
of the maximum, as can be seen from the shape of the peaks) keeps the analytic estimates
relatively close to the computed values. Note that what is computed here agrees qualitatively
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Figure 2: Energy gain as a function of initial particle radius for the ultimate LHC parameters.
See figure 1 for the meaning of the lines.

with what is found in [4], in particular figure 1.
The values for rC and ∆Emax found in section 3.5 compare well with the location and

height of the largest peak in figures 1 and 2. In fact, using equation (9) and the fact that the
integral in that formula is proportional to r̄ (see the discussion in section 3.3), one expects
the other peaks at radii well outside the beam core to lie at the radii rC/(2n+1), for integers
n (since the peak corresponds to the particle making a quarter oscillation plus any multiple
of a half oscillation). One further expects the height of the peaks to be governed by equation
(12) for large radii, and thus their heights are given by

∆Emax

ln
rC

c0σ⊥

− ln(2n + 1)

ln
rC

c0σ⊥

.
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Figure 3: Same as figure 1, showing detail at low radii.

Examining the figures shows there is excellent agreement between the expectations given
here for the expected radii and height of the peaks at radii well outside the beam core and
the numerical results. Note that there are a finite number of peaks in the figures, which is
⌊2nO(0)⌋ = ⌊2/[λmax∆tstep]⌋ (see section 4.1 and figure 3).

One of the most dramatic effects seen in the figures is the result of computing the behavior
for a non-rectangular bunch. At large radii, the shape of the bunch ceases to matter, as shown
in equation (3), and confirmed in figures 1 and 2. However, if either the Gaussian or the
parabolic-like longitudinal bunch shape is used, the energy gain is greatly reduced for lower
radii from what it would be for the rectangular bunch (also see figure 3). This is because
the current in the bunch is often less than the peak current, which is used throughout for
the rectangular bunch shape. For the very low radii where the test charge goes through
several oscillations, there is probably a sort of adiabatic invariance (see, for example, [5])
of the action due to the fact that the oscillation period is short compared to the time scale
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over which the bunch current varies, which causes the particle to gain very little energy (see
figure 3).

Despite the large difference seen between the curves for rectangular and non-rectangular
bunches, the total energy deposited doesn’t change so much. There are several reasons behind
this. The first is that for a uniform distribution of test particles, there are more particles
at large radii. For large radii, there is little difference between the energy gained for the
different longitudinal distributions. The second reason is that the peaks for the rectangular
distribution tend to be narrower than the peaks for the non-rectangular distributions, thus
not giving as much of a change in area under the peak as one might expect. Finally, the
peaks for the rectangular distribution are rather widely spaced for the largest ones.

Thus, the main effect of using a realistic longitudinal distribution instead of a rectangular
one is to reduce the maximum energy the test charges will gain. Additionally, the effect on
the average energy deposition could be much stronger if there were a nonuniform distribution
of particles in the beam pipe, particularly if that distribution were concentrated more at lower
radii.

Finally, note that the program which produced the results in this section can be obtained
from http://wwwslap/collective/jsberg/egain/.

5 Conclusions

This paper has given a derivation of an approximate formula for the energy gained by a
particle when a bunch passes by. Equations (3), (8), and (12) describe the energy gained,
and the transition radius (11) indicates which approximation applies.

When the results are numerically integrated, one finds a significant dependence of the
energy gain on the longitudinal bunch distribution. In particular, the peak values of the
energy gain will be significantly reduced if one uses a realistic distribution instead of a
rectangular one.

If before the bunch passes by, there is a uniform distribution of test charges in the beam
pipe, the sum of (13) and (14) gives the total energy gained by the test charges in most
cases. If the transition radius is within the beam pipe, the energy deposition per test charge
is proportional to the square of the beam current. Taking into account the fact that when the
test charges in question are photoelectrons produced by synchrotron radiation, the number of
source particles NT will also be proportional to the beam current, the total energy deposition
will be proportional to the cube of the beam current. In practice, the total energy deposition
is not reduced greatly when one uses a realistic distribution instead of a rectangular one,
but that might change if the initial distribution were not uniform, but concentrated more at
lower radii.

If instead one is interested in the energy gained by the photoelectrons which are initially
produced as the first bunch goes by, that can be computed reliably (for any longitudinal
distribution) using equation (6), and the fact that the energies of the particles will be dis-
tributed from 0 to this value according to the distribution function 1/(2

√
E∆Ewall) (see

section 3.1 and appendix A).
Finally, note that when integrating the equations of motion, the step sizes described in

section 4.1 must be used, especially for particles starting at low radii, otherwise the results
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could be very inaccurate.
There are many improvements which could be made in this analysis. One could attempt

to perform an adiabatic invariance analysis to attempt to analytically approximate what
the energy gains are for a non-rectangular distribution. One could consider what happens if
particles have an initial radial momentum or angular momentum. One could consider what
happens in the presence of a non-cylindrically symmetric beam (which will almost certainly
be the case due to non-equal horizontal and vertical beta functions). One could look at what
happens in the presence of a magnetic field, as there will be in the dipoles and quadrupoles.
One could compute the longitudinal momentum that the particles gain due to the bunch
passage. So, there is still much work to be done.
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A The Probability Distribution for Photoelectron En-

ergy Gain

As described in subsection 3.1, the momentum gained as a function of scaled longitudinal
position z̄ is

P = ∆pwall

∫ z̄

−∞

λ(z′)dz′. (7)

If λ(z̄)dz̄ is the probability that there is a source particle between the scaled longitudinal
positions z̄ and z̄ + dz̄, the probability of a photoelectron being produced between z̄ and
z̄ + dz̄ is also λ(z̄)dz̄. If f(P )dP is the probability that the momentum gain is between P
and P + dP , λ(z̄) and f(P ) must be related by λ(z̄)dz̄ = f(P )dP along with the relation
(7). Thus, f(P ) = λ(z̄)/(dP/dz̄). But from equation (7), dP/dz̄ = ∆pwallλ(z̄). Thus,
f(P ) = 1/∆pwall. Clearly, P can potentially be anywhere from 0 to ∆pwall. Thus, the
momentum is uniformly distributed from 0 to ∆pwall.

Next, following a similar argument, since the energy gain E = P 2/2mT , if g(E) is the
distribution in energy,

g(E) =
f(P )

dE

dP

=
mT f(P )

P
=

mT

P∆pwall

=
1

2
√

E∆Ewall

.

This is nonzero only between 0 and ∆Ewall. The average of E is ∆Ewall/3.
Note that this result was found previously by S. A. Heifets in [2] (see equation (13) there

and the surrounding paragraph).
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